土壤与地下水中典型污染物的快速检测响应阈值

发布时间:2025-04-16

  参照国内外相关文献报道,结合前期调查工作数据,制定了土壤与地下水中典型污染物(NAPLsVOCs、可降解有机物、氨、汞、铅等)快速检测在不同污染程度下的响应阈值范围表(附表A)。其中无污染一般为环境背景;轻度污染一般表示存在污染物,但未超过国家管控标准;中度污染一般表示该污染浓度超过国家标准,需采取管控处理;重度污染一般表示污染源区。本表中的阈值范围会根据最新文献资料和微扰动调查数据进行更新,原则上每年更新一次。 

附表A土壤与地下水中典型污染物的快速检测响应阈值范围表 

典型污染物

测试项目

单位

无污染

轻度污染

中度污染

重度污染

NAPLs

氡气

Bq/m3

200~2000

200~2000

200~2000

100~500

VOCs

VOCs

ppm

0~0.1

0.051

0.510

5~10

可降解有机物

CO2

%

0.04~0.5

0.21

0.55

2~10

O2

%

20~21

1820

15~19

18~10

CH4

%

0~0.1

0.050.25

0.1~1

0.5~5

H2

ppm

0~50

10100

50~500

200~1000

H2S

ppm

0~0.5

0.11

0.5~5

2~10

NH3

ppm

0~2

0.15

2~10

5~20

汞蒸气(Hg

μg/m³

0~1

0.1~10

1~100

10~1000

铅蒸气(Pb

μg/m³

0~0.2

0.02~2

0.2~20

2~200

  注: 

  (1)本表给出适用于典型污染物微扰动快速检测场景的阈值范围,实际应用过程中,阈值需根据场地地层条件、温度、湿度等条件及前期调查数据,在阈值范围内调整。 

  (2VOCs 值采用PID监测,检测值为苯当量浓度,其他VOCs需按响应系数折算。 

    

  参考文献: 

  Bonnard R, Hulot C, Lévèque S. Méthode de calcul des Valeurs de Constat d’Impact dans les sols[J]. Etude de l’INERIS pour le Ministère de l’Aménagement du Territoire et de l’Environnement, 2001. 

  Borch T, Kretzschmar R, Kappler A, et al. Biogeochemical redox processes and their impact on contaminant dynamics[J]. Environmental Science & Technology, 2010, 44(1): 15-23. 

  Conrad R. Microbial ecology of methanogens and methanotrophs[J]. Advances in Agronomy, 2007, 96: 1-65. 

  Estudio de Riesgo Ecológico Declaración de Impacto Ambiental–Pr[R]. 2010. 

  European Committee for Standardization (CEN). Characterization of waste — Determination of total organic carbon (TOC) in waste, sludges and sediments: EN 15936:2012[S]. Brussels: CEN, 2014.  

  Fendorf S, Nico P S, Kocar B D, et al. Arsenic and mercury speciation and mobilization in soils[J]. Elements, 2011, 7(6): 409-419.  

  GB 50325-2020. 民用建筑工程室内环境污染控制标准[S]. 2020. 

  Hanson P J, Edwards N T, Garten C T, et al. Separating root and soil microbial contributions to soil respiration: A review of methods and observations[J]. Biogeochemistry, 2000, 48(1): 115-148. 

  Hinwood A L, Rodriguez C, Runnion T, et al. Risk factors for increased mercury levels in soil and air surrounding artisanal and small-scale gold mining sites[J]. Environmental Research, 2022, 212: 113283. 

  Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2021. 

  International Organization for Standardization (ISO). Soil quality — Determination of the effects of pollutants on soil flora — Part 2: Effects of chemicals on the emergence and growth of higher plants: ISO 11269-2:2012[S]. Geneva: ISO, 2016. 

  PerkinElmer. Determination of Volatile Organic Compounds (VOCs) in Soil by HS-GC/FID Monitoring and Analysis of VOC Contamination in Soils Using PerkinElmer Instruments[R]. 1994. 

  Project Lightning Environmental and Social Impact Assessment. Appendix 1 – R[R]. 2024. 

  Schlesinger W H, Bernhardt E S. Biogeochemistry: An Analysis of Global Change[M]. 3rd ed. San Diego: Academic Press, 2017. 

  Sihi D, Davidson E A, Chen M, et al. Merging a microbial decompostion model with soil organic matter chemistry: A theoretical framework for priming effects[J]. Global Change Biology, 2023, 29(1): 40-55. 

  Smith K E, Spanel P, Jones P R. Trace gas emissions from soil: A comparison of NH and CO concentrations in agricultural and forest soils[J]. Atmospheric Environment, 2000, 34(17): 2853-2854. 

  Technical division environmental measurement technologies. Measurement of organic soil pollutants-Planning of measurements for the determination of volatile organic compounds in soil gas, VDI 3865Blatt 1:2005-06[R]. Düsseldorf: VDI/DIN-Kommission Reinhaltung der Luft, 2007. 

  VDI/DIN-Kommission Reinhaltung der Luft. Measurement of organic soil pollutants-Planning of measurements for the determination of volatile organic compounds in soil gas: VDI 3865 Blatt 1:2005-06[R]. Düsseldorf, 2005. 

  World Health Organization (WHO). Guidelines for Indoor Air Quality: Selected Pollutants[M]. Copenhagen: WHO Regional Office for Europe, 2010. 

  Zhang R, Jiang L, Zhong M, et al. Applicability of soil concentration for VOC contaminated site assessments explored using field data from the Beijing-Tianjin-Hebei urban agglomeration[J]. Environmental Science & Technology, 2019, 53(2): 789-793. 

  Zhuang Q, Shurpali N J, Srivastava A, et al. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales[J]. Global Biogeochemical Cycles, 2023, 37(2): e2022GB007676. 

  郝辰宇, 钟茂生, 姜林, . 基于土壤气的场地VOCs污染刻画及风险评估[J]. 2022. 

  王基华, 卫敬生, 李荣春. 勘查地球化学测汞方法在工程地质中的应用[J]. 工程地质学报, 2000, 8(S1): 546-551. 

  吴自香, 刘彦兵, 贾育新, . 土壤氡测定的影响因素探讨[J]. 中国辐射卫生, 2006, 15(1): 23-24.  

  中华人民共和国生态环境部. 环境空气质量标准: GB 3095-2012[S]. 2017. 

  中华人民共和国生态环境部. 环境影响评价技术导则 大气环境: HJ 2.2-2018[S]. 2019. 

  中华人民共和国生态环境部. 土壤环境质量 建设用地土壤污染风险管控标准: GB 36600-2018[S]. 2016.
下一篇:实验测试中心
访问次数 : 
1001814452911